题目
(1)若f(-1)=0,试判断函数f(x)零点的个数;
(2)是否存在a,b,c∈R,使f(x)同时满足以下条件:
①对任意x∈R,f(-1+x)=f(-1-x),且f(x)≥0;
②对任意x∈R,都有0≤f(x)-x≤

明理由。
(3)若对任意x1、x2∈R且x1<x2,f(x1)≠f(x2),试证明:存在x0∈(x1,x2),使f(x0)=

答案
此函数f(x)有一个零点;当a≠c时,⊿>0.函数f(x)有两个零点.
(2)假设a,b,c存在,有(1)可知抛物线的对称轴为x=1,∴-

由(2)可知对任意的x∈R,都有0≤f(x)-x≤

得0≤f(1)-1≤0,所以,f(1)=1,即a+b+c="1, " ②又因为f(x)-x≥0恒成立,
∴a>0
(b-1)2-4ac≤0 即(a-c)2≤0,∴a=c,③ 由①②③得a=C=


所以f(x)=

(3)令g(x)=f(x)-

g(x1)=f(x1)-



=

所以,g(x1)g(x2)<0,所以g(x)=0在(x1,x2)内必有一个实根,
即存在x0∈(x1,x2)使f(x0)=
