已知函数.(Ⅰ)若函数在区间上有最小值,求的值.(

难度:简单 题型:解答题 来源:不详

题目

已知函数.
(Ⅰ)若函数在区间上有最小值,求的值.
(Ⅱ)若同时满足下列条件①函数在区间上单调;②存在区间使得上的值域也为;则称为区间上的闭函数,试判断函数是否为区间上的闭函数?若是求出实数的取值范围,不是说明理由.

答案

(Ⅰ) ,对称轴
①当时,,解得,(舍去)
②当时,,解得,(舍去)
③当时,,解得.
由①②③可得  -----------------4分
(Ⅱ)当时,函数上是闭函数.-------6分
∵函数开口向上且对称轴为
上单调递增.
设存在区间使得上的值域也为
则有,即方程有两不同实数根  -8分
,解得
的取值范围为

解析

闽ICP备2021017268号-8