已知二次函数经过点(1)求的解析式;(2)当时,求 难度:一般 题型:解答题 来源:不详 2023-11-22 21:30:04 题目 已知二次函数经过点(1)求的解析式;(2)当时,求的最小值。 答案 解:根据题意可知二次函数与x轴的两个交点为(-1,0)(3,0)因此设f(x)=a(x+1)(x-3),且f(0)=-3,解得a=1,故函数的解析式为f(x)=x2-2x-3,。当时利用定义域与对称轴的关系进行分类讨论得到结论。求解得到最小值。 解析 本试题主要是考查了二次函数的解析式的求解问题,以及二次函数的最值的运用。(1)根据已知的点的坐标,设出二次函数的两根式,然后将第三个点代入得到参数a的值。(2)在第一问的基础上可知,函数的开口和对称轴x=1,但是定义域与对称轴的关系不确定,因此分类讨论得到结论。 相关题目 已知二次函数经过点(1)求的解析式;(2)当 二次函数的系数均为整数,若,且是方程 已知,若存在不同的实数使得,则的取值 函数在上的最小值和最大值分别为A.B (本题满分12分)二次函数,又的图像与 (本小题满分10分)已知是二次函数,方程 已知。(1)若不等式对任意实数恒成立, 借助“世博会 设,(1)解方程;(2)解不等式. 二次函数的图象如何移动就得到的图 闽ICP备2021017268号-8